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Abstract: This paper examines how the Internet facilitates the utilization of science in industrial 

innovation. I find that the Internet enables firms to discover “hidden gems” –  commercializable 

yet under-recognized scientific findings that have been published by early-career scientists, in 

less prestigious journals, and/or with fewer academic citations but with higher forward patent 

citations. I compiled a database that contains 541,568 patent citations that refer to scientific 

papers; these citations came from patents applied between 1992 and 2000 by 3,651 public firm 

locations (firm sites in a given metropolitan statistical area). I then identified the staggered 

adoption of basic Internet at these firms. I show that access to the Internet at firm locations is 

associated with a 9.3% increase in the likelihood of citing scientific papers, and up to 13.2% 

increase in the likelihood of citing “hidden gem” papers. These findings suggest that IT reshapes 

the process that firms use to source knowledge in innovation. By reducing search costs, IT 

enables firms to access scientific knowledge that previously had been less visible – and to 

discover and capitalize on its commercial value.  
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1. Introduction 

Firms rely on academic scientific discoveries in their innovation process (Sorenson and Fleming, 

2004; Arora et al., 2018; Bikard and Marx, 2020). Comparisons of patented inventions that cite 

science and those that do not have recently shown that patents directly citing the scientific 

literature have greater monetary value and novelty (Poege et al., 2019; Watzinger et al., 2021); 

an increased likelihood of renewal; and more forward patent citations (Ahmadpoor and Jones, 

2017). Nevertheless, only a small fraction of scientific knowledge has been explored by firms, 

due to barriers in translating scientific discoveries into actual inventions (Ahmadpoor and Jones, 

2017; Bikard, 2018; Marx and Hsu, 2021; Bikard and Marx, 2020). In addition, the explosion of 

knowledge in the digital era makes it increasingly difficult to identify the right piece of scientific 

work one seeks (Jones, 2009; Alberts, 2010). The high costs for firms to search, evaluate, and 

absorb the scientific literature (Nelson, 1959; 1982), and the associated costs of communication 

within the research teams involved in the innovation process may have slowed down the creation 

of science-based inventions. Information technology (IT) has the potential to reduce these costs 

and, thus, to bridge science and innovation.  

Information technology is likely to increase firms’ ability to find and source relevant 

science in the pursuit of innovation. However, it is less clear how IT influences the process. Does 

IT reinforce patterns of bias in existing access? Or does IT instead help to democratize the 

process? As a result of bounded rationality, firms might take notice of work largely undertaken 

by superstars, who publish in highly ranked journals and have more academic citations? Or, with 

keyword searches replacing manual browsing of curated journals, firms may instead come across 

scientific work that was more obscure prior to the advent of the quicker searching made possible 

by such technologies.  
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Existing literature in strategy, information systems, and economics provides competing 

predictions to these research questions. On the one hand, IT might amplify the Matthew effect of 

cumulative advantage by shining a spotlight on articles by “superstars” or work that is largely 

published in top journals. Bikard and Marx (2020) show that firms are more likely to use 

scientific papers with higher status – that is, those that published in hubs1,  have more academic 

citations, and those that are published in journals of higher impact factors. This finding could 

suggest that highly recognized scientific papers are more useful to firms, and that such papers are 

therefore expected to create the majority of the value in the industrial innovation process (i.e., the 

Pareto Principle or the power law). New IT users, especially those who have had little prior 

experience in citing science, are more likely to pay more attention to the  publications that have 

achieved greater recognition. This could lead to a concentration in the utilization of the well-

known publications, resulting in "superstar effects" (Rosen, 1981) and a "winner-take-all" 

phenomenon (Frank and Cook, 2010). On the other hand, IT instead may have the opposite 

effect: disproportionately increasing the citations of papers that are harder to find, due to the 

technologies’ ability to lower search costs and to provide quicker, easier access to relatively 

obscure, lower-status papers available in the online knowledge base. Such research includes 

papers written by early-career scientists,  work published in relatively low-impact-factor 

journals, and publications that have generated relatively fewer academic citations. For example, 

using the Social Science Research Network as a natural experiment, Kim (2013) found similar 

"long-tail" effects of open access on paper citations, with articles in lower-ranked journals 

gaining a boost in forward paper citations.  

 
1 Hubs refer to "a geographic concentration of patenting by firms in a specialized technical field. (Bikard and Marx, 
2020) 
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This paper takes a first step toward answering these questions by empirically estimating 

how Internet adoption has shaped firms' reliance on science in the innovation process. I examine 

how access to basic Internet at firms affects the likelihood of citing the scientific publications in 

patent inventions, and, in particular, the heterogeneity of patent citations linked to high- and low-

status scientific discoveries.  To do so, I construct three measures for the academic status of each 

cited publication: (1) the career stage of the paper’s author(s), (2) the journal impact factor at the 

time of the article’s publication,  and (3) the citation count by other academic papers. I merge 

several sources of data: a private technology-adoption dataset, Harte Hanks Market Intelligence 

Computer Intelligence Technology database (CI data); the recently assembled Patent Citation to 

Science (PCS) dataset; data from PatentsView, and, for firms’ R&D expenditure, the Compustat 

dataset. I then construct a unique sample that consists of a balanced panel of 3,651 publicly listed 

firm locations (firm sites within a metropolitan statistical area (MSA)) that have at least one 

patent application over the period from 1992 to 2000. The commercialization of the Internet in 

late 1995 means that this period offers an opportune window of time to measure the staggered 

adoption of the Internet at firms, and to capture early diffusion of this technology. I identify 

541,568 patent citations, which refer to 167,882 scientific papers; these citations were referenced 

in 192,856 patent applications successfully granted to firms in the sample over the period.  

With these data, I provide two sets of findings. First, Internet adoption is associated with 

an increase in using science and, in particular, in using the less recognized scientific discoveries 

in the academic literature. Articles by early-career scientists, articles published in less prestigious 

journals, and articles with fewer academic citations are consistently more likely to be cited by 

patent inventors in Internet-adopting firms. The percentage changes in the likelihood of citation 

range from 8.1% to 13.2%. By contrast, firms’ access to the Internet has no significant impact on 
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patent citation that refer to notable papers – those published by senior scientist(s), those 

published in top-ranked journals, and/or those with a large number of academic citations.  

Second, Internet adoption at firms is associated with an increase in citing commercially 

valuable papers that have more forward patent citations. I use the forward patent citation count to 

a focal paper as a proxy for a paper's commercial impact. This could not  easily have been 

observed by the public during the sample period, and, thus, the inventors were unaware of the 

commercial value of any cited paper during the period in which they worked to gain a patent. 

The two sets of results suggest that IT enables firms to discover “hidden gems” –  

commercializable science that had been less recognized in the academic literature. These 

findings shed light on the link between science and innovation, and how this link could be 

reinforced by IT.  

Several recent studies have explored characteristics that affect firms' attention allocation 

to scientific literature, for example, research funding sources (Fleming et al, 2019), institutional 

origin (Bikard, 2018), and location (Bikard and Marx, 2020). The use of IT aligns with these 

studies but also extends them. By leveraging IT adoption as a treatment that reduces the costs for 

firms to cite science, this paper contributes to the literature by theorizing and providing empirical 

evidence on why firms pay attention to low-status scientific literature. The findings can provide 

important strategic implications for firms to identify and exploit useful scientific knowledge and 

to gain competitive advantage (Bikard and Marx, 2020). 

This paper makes several contributions. First, it contributes to the literature on IT in 

innovation. As demonstrated by prior literature, IT can play many roles in innovation, including 

providing the inputs for innovation (Kleis et al., 2012, Ravichandran et al., 2017), 

complementing other innovation inputs to achieve greater returns (Joshi et al., 2010; Saldanha et 
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al., 2017); or serving as an effective search tool that facilitates recombination of knowledge (Wu 

et al., 2019;2020; Lou and Wu, 2021; Saldanha et al., 2021). Several papers examine the link 

between IT and knowledge flows. For example, early IT such as the cooperative university 

network BITNET has been shown to have increased coauthored works among scientists, and to 

have facilitated knowledge flows within academia (Agrawal and Goldfarb, 2008; Ding et al., 

2010); the Internet has been shown to foster R&D collaboration within firms (Forman and van 

Zeebroeck, 2012; 2019). While there is a rising awareness that knowledge spillovers from 

academia to industry affect innovation performance (Arora et al., 2018; Marx and Fuegi, 2020), 

no direct evidence has emerged to show how IT can affect such knowledge flows. This paper 

fills the gap by highlighting the role of the Internet in bridging science and industrial innovation.  

  Second, this paper contributes to the literature in search-based innovation. I examine how 

IT tools can increase the breadth of searches by facilitating firms’ utilization of scientific 

knowledge in the product innovation process. This finding adds value to the discussion on search 

breadth and innovation performance (Scott and Brown, 1999; Brown and Duguid, 2000; 

Leiponen and Helfat, 2011). In addition, some recent studies focus on scientific knowledge as 

one important component in invention portfolios (Ahmadpoor and Jones, 2017; Marx and Fuegi, 

2020). One unsolved question from this line of the literature concerns which part of science firms 

build upon from a large knowledge stock. Empirical evidence partially unpacked this question by 

showing that government-funded research (Fleming et al., 2019), university research (Bikard, 

2018), and research produced in geographic hubs (Bikard and Marx, 2020) are more likely to be 

cited by inventing firms. I contribute to this literature by providing empirical evidence of how IT 

can increase firms’ utilization of scientific knowledge in innovation. 
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Third, I speak to the literature on the “long-tail” effect of the Internet in consumer goods, 

and provide different theoretical foundations to explain such long-tail effects of the Internet on 

scientific knowledge exploration. The long-tail literature in consumer goods suggest that IT leads 

to an increase in sales of niche products and to greater product variety due to lower search costs, 

more efficient inventory, and a better match between the demand side and supply side (Bakos, 

1997; Anderson, 2006; Brynjolfsson et al., 2006, 2011; Fleder and Hosanagar, 2009; Peltier and 

Moreau, 2012). Scientific knowledge, as an intermediate input in firms' innovation function, is 

fundamentally different from consumer goods. Using the Social Science Research Network as an 

experiment, Kim (2013) found long-tail effects of open access on paper citations, with lower-

ranked articles receiving a boost in forward paper citations after posting on SSRN. I contribute to 

this literature by theorizing and empirically demonstrating why IT can disproportionately 

increase the citations of scientific papers that are harder to find.  

The rest of this paper is organized as follows: In Section 2, I provide the conceptual 

background of using the extent of scientific citations in patents as a measure of scientific input 

into innovation; and I formulate the hypothesis on how the Internet shapes firms’ reliance on 

science. Section 3 describes the main data sources. Section 4 presents the empirical setting of 

how the Internet affects the utilization of science in patenting activities. Section 5 discusses the 

empirical results. Section 6 concludes. 

2. Theoretical Framework 

In this section, I formulate my hypothesis on how the adoption of the Internet at firms can lead to 

an increase in utilizing low-status scientific discoveries in innovation. I begin by describing 

science as an input in patent inventions, and I then analyze the frictions for firms to search, 

evaluate, and utilize science. I provide historical background to show how these frictions have 
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changed over time, and I then I theorize how and why IT can increase the utilization of low-

status papers. I then predict the commercial impact of cited papers discovered by the Internet.  

2.1 Scientific knowledge as an input in firm R&D 

A wealth of research demonstrates the ability to exploit external knowledge as a critical 

component in the innovative activities that firms take to improve performance (Cohen and 

Levinthal, 1990; Laursen and Salter, 2006; Berchicci, 2012). Firms rely on a variety of channels 

to search for innovative opportunities (Scott and Brown, 1999; Laursen and Salter, 2006; 

Leiponen and Helfat, 2009), and each channel involves institutional norms, habits, and rules 

(Brown and Duguid, 2000).  Among the different knowledge sources, scientific research from 

universities, research centers, and the private sector has proven to be a fundamental resource that 

plays an increasing role in industrial innovation. Science as a “map” can lead firm inventors 

directly to useful combinations (Fleming and Sorenson, 2004). More specifically, science 

enables firm inventors to generate hypotheses worth exploring, rule out paths that lack promise, 

provide tools to speed development, suggest techniques to aid laboratory or statistical work, and 

create basic pieces of scientific knowledge for recombination (Mokyr, 2005; Murray and Stern, 

2007).  

2.2 The Internet reduces search and transfer costs of scientific knowledge 

Historically, the search for scientific knowledge has proved costly to business. For decades, 

information-retrieval systems designed in the 1960s were used by reference librarians, patent 

attorneys, and other specialized professionals trained to search the collections of documents. The 

advent of the Internet, which became available to the business sector beginning in late 19952,  

 
2 The arrival of the World Wide Web in the early 1990s fundamentally changed the way that knowledge was stored, 
but also brought complex challenges in search, such as ranking, multiple meanings, and problems related to the 
constantly changing nature of information and knowledge (Easley and Kleinberg, 2010). However, the Internet had 
not been privatized at that time. Due to institutional and legal constraints, most commercial firms had no access to 
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exposed the high search costs for firms to access academic science. At that time, firms had two 

major acquisition channels: physical libraries and subscriptions to print journals. Firm inventors 

would visit a local library to find relevant materials on the bookshelves, or to consult with the 

librarians, who would use a special retrieval language to conduct keyword search in the database 

on (localized) computers. A search would include digitized contents of printed publications and 

the print books and journals stored on the bookshelves of the libraries3. Subscriptions to 

academic journals were available for a few firms with high R&D efforts. These firms generally 

had subscriptions to only a limited selection of journals, and those journals were available almost 

exclusively in print, with some journals beginning to be digitized4.  These two channels suggest 

the high search costs for firms seeking to source science in their work. 

In addition to the costs of searches, the absence of advanced IT technologies created high 

communication barriers for collaboration with universities, and for participation in academic 

activities (e.g., conferences),  resulting in limited involvement of firms with academia (Agrawal 

and Henderson, 2002; Murray, 2002; Bikard and Marx, 2020). This further impeded knowledge 

flows from academia to industry. Such significant barriers made it difficult for research to 

capture the level of inventor attention required to foster the transfer of scientific knowledge into 

actual inventions (Koput, 1997; Ocasio, 1997).    

 
the Internet until late 1995 (Greenstein, 2015). Only in very rare circumstances (such as for research purposes) did 
commercial firms have access to the Internet prior to 1995. 
3 The digitization of journal articles in the United States can be traced back as far as the 1960s. The National Library 
of Medicine started to digitize selected articles in the field of medicine with an index (“Index Medicus”), and to 
provide access to the content of this index via the MEDLINE system, which was based on specialized 
telecommunications systems. Project Gutenberg, founded in 1971, was the first digital library that focused on 
digitizing full texts of books. These digitized articles were relatively easy to find in the databases of localized 
computers, though the querying system is different from a present-day web search.  
(https://www.nlm.nih.gov/medline/medline\_history.html and telephone interview) 
4 For example, the JSTOR, which stands for Journal Storage, was founded in 1955, becoming one the early digital 
libraries. By the end of 1996 it had collected and digitized 16 journals (including the American Economic Journal, 
Ecology, Econometrica, and The Journal of Modern History). By the end of 2000 JSTOR had digitized 224 journals. 
Source: author’s interview with JSTOR Content Team. 
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Thus, the arrival of the Internet brought two disruptive and fundamental changes to the 

ways in which firms source science. First, connecting to the Internet reduces the costs of 

knowledge search and lowers the access barriers to academic science. Individual inventors can 

now conduct direct keyword searches, browse the Web , and access bibliographic information of 

the relevant scientific articles they find. The Internet also improves knowledge transfer. 

Inventors can evaluate and absorb the scientific knowledge from selected articles at a lower cost 

(Alavi and Leidner, 2001). Therefore, the two mechanisms indicate that the use of the Internet 

increases  firms’ reliance on science. This implies the baseline prediction:  

H1: Other things equal, Internet adoption will be associated with an increase in the 

likelihood of citing scientific papers in patent inventions.   

 

2.3 The Internet increases utilization of low-status academic scientific papers 

Since at least the work of March (1991), organizational scholars have distinguished between 

“exploitation” and “exploration” in strategic formulation. A key to establishing sustainable 

competitive advantage is not merely harvesting legacy investments (exploitation) but coming up 

with new inventions (exploration) that can eventually be brought to market as new products and 

services. Evidence has shown that IT can facilitate knowledge exploration. In some cases, IT can 

facilitate firms’ exploration of knowledge about areas of expertise that are unfamiliar to the firm, 

or of information from geographically remote areas, leading to novel recombinations of ideas 

(Offsey, 1997; Uzzi el al., 2013; Forman and van Zeebroeck, 2018; Wu et al., 2019; Zheng and 

Wang, 2020). In other cases, IT can reinforce individuals’ exploitation of knowledge within a 

familiar base (Rosenblat and Mobius, 2004; Van Alstyne and Brynjolfsson, 1996, 2005). Yet 

little has been studied about how IT affects utilization based on the status of knowledge – that is, 
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whether IT primarily leads firms to use well-known knowledge, or to increase the use of under-

recognized knowledge. In this section I theorize that the Internet can disproportionately increase 

firms’ utilization to low-status scientific publications, and I offer insights into why this is the 

case. 

The use of the Internet and the knowledge explosion associated with the Internet 

revolution have tremendously increased the number of scientific papers easily available to firms 

with the online knowledge base. This increase is disproportionately larger for papers that are 

harder to access in a physical library. Such lower-status papers include those that are published 

by early-career scientists, those published in lower-ranking journals, and those with fewer 

academic citations. As a result, access to these “long-tail” papers increased to a 

disproportionately greater degree than access to the most prominent papers.   

The technological advancement in Web searches associated with the Internet also 

increases firms’ attention allocation to long-tail papers. Web searches enable inventors to 

perform nonspecific searches by typing a single keyword or a few different keywords to find the 

digitized content of any scientific papers on popular digital platforms. In the 1990s, such 

platforms included Yahoo!, Excite and AltaVista, for example. Such searching on the World 

Wide Web (Berners-Lee et al., 1994) refers to “the process of discovering pages that are relevant 

to a given query” (Kleinberg and Easley, 2010). The ability to conduct Web searches 

fundamentally improved upon the traditional, offline database-querying systems that had been 

used in physical libraries5. For example, if an inventor types two keywords that are from two 

very distant areas, the most relevant content is likely to surface via higher rankings generated by 

 
5 See the discussion on relevance, popularity, and distillation of broad search topics through the discovery of 
“authoritative” information sources on the Web. 
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Web page-ranking algorithms6. In this way, less recognized papers in the academic literature are 

more likely to capture firms’ attention on the Internet through a more effective page ranking than 

through a library database query. In addition, behavioral changes associated with Web searches 

can also increase the demand for articles that are harder to find. For example, individual 

inventors can try different combinations of relevant keywords in multiple ways as part of the 

search process. This was not possible through traditional library searches. An improved 

combination of keywords increases the visibility and accessibility of the most desired and most 

relevant scientific discoveries, which were harder to find prior to the advent of such search 

capacities (Pant and Srinivasan, 2010).  

From the inventors’ learning perspective, the Internet reduces the uncertainty in 

knowledge exploration to less-known discoveries.  Information overload and the high cost to find 

papers make it impossible for any firm to search the entire knowledge space for 

commercializable science. As a result, firm inventors usually rely on the status of journals or 

scientists to source science. For example, in the process of knowledge exploration, an article 

published in “Nature” or “Science” is easier to find and considered to be less uncertain, with 

more predictable learning outcomes, compared to papers in lower-ranked journals.  The 

availability of Internet tools greatly reduces knowledge search and transfer costs, and thus 

enables firms to explore these long-tail scientific discoveries with reduced uncertainty.  In this 

way, the Internet increases firms’ demand for long-tail scientific discoveries.  

 

With the discussions above, the second hypothesis is:  

 
6 The most influential two algorithms include (1) Hypertext-Induced Topic Search or HITS by Jon Kleinberg, and 
(2) PageRank developed in 1998 by Google’s founders Sergey Brin and Larry Page.  
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H2: Other things equal, Internet adoption will be associated with a larger increase in the 

likelihood that patents cite papers with low academic status, defined as those papers by 

early-career scientists, those published in lower-ranked journals, and/or those with fewer 

academic citations. 

  

2.4 The Internet increases utilization of scientific publications with high commercial impact 

Innovation processes involve searching for new ideas that have commercial potential (Laursen 

and Salter, 2006). Yet the commercial value of published papers can be under-recognized in the 

academic literature due to various reasons. This section discusses how IT enables firms to 

discover commercializable science.   

Papers with high creatively and novelty. Highly creative and novel work resulting from 

unique or atypical combinations of prior knowledge (Uzzi et al., 2013) can bring valuable 

scientific inspirations to firms. Yet some of the papers that contain this type of scientific work 

may be harder to find, and they may be under-recognized in the academic literature. First, a fresh 

concept may take a long time to assimilate because few conventional narratives, languages, or 

cultures fit it (Wang et al., 2016; Cetina, 2009). Second, the academic community may take a 

long time to recognize the validity of highly novel ideas, and, in turn, to promote their value(van 

Raan, 2004; Bornmann and Daniel, 2008). Third, highly creative work may face a high risk of 

failing the peer-review process (Mobley et al., 1992; Estes and Ward, 2002; Foster et al., 2015). 

For these reasons, a commercially useful, novel work may end up being published in journals 

that have  lower impact. As discussed in Section 2.3, these papers may be harder to find without 

effective IT tools.  
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Similarity, creative and novel work may not be identified through forward paper citation 

count. Prior literature has shown that paper citation counts and novelty can sometimes have 

negative correlations. Wagner et al. (2019) found that the highly cited international, collaborative 

articles are less novel and with fewer atypical combinations of conventionality. Papers with high 

levels of forward academic citations  reflect an audience effect and the preferential attachment 

based on reputation, in which authors from more countries get access to the article. Though little 

evidence is available on the reverse relationship (between forward paper citation counts and a 

novel paper), the findings of previous research suggests that many factors other than the 

usefulness of a paper can account for the forward academic citations. As a result, one would 

expect that inventive firms with access to Internet tools would also have greater access to novel 

papers, even if these papers have relatively fewer academic citations. Using a similar rationale, I 

discuss three additional sets of publications of high commercial value that can be discovered by 

Internet searching.  

Papers with a narrow and specific topic. Academic papers with a narrow topic that is not 

targeted to top scientific journals can be a useful resource to firms. These papers provide useful 

details that can, for example, aid laboratory or statistical work, and suggest effective tools to 

speed development (Mokyr, 2005; Murray and Stern, 2007).  

Conference papers. Conference papers and non-peer-reviewed publications can be 

another useful source for emerging knowledge. In certain fields, academic literature start 

circulating via conferences prior to the actual publication, and given that knowledge and science 

is moving forward rapidly, this could be a place to stay abreast of the research frontier, which is 

always moving. For example, the appearance of “digital science” in the case of complex 

innovation requires firms to quickly absorb the knowledge to “measure, analyze, and model 
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chemical compounds, diseases, and human biology” (Dougherty and Dunne, 2012). Academic 

conferences could be one of the best sources for such emerging knowledge.   

Other under-recognized works in the academic literature. In general, the sociology of 

science is a communication and exchange of research findings and results; publication serves to 

generate professional recognition and esteem, promotion, advancement, and funding for future 

research for the authors (Fox, 1983). Therefore, the institutional design of publication suggests 

many other potential cases in which a work of high commercial value may be under-recognized 

in the academic literature. Merton (1968) pointed out that young cohorts of scientists with 

limited reputation and less cumulative advantage are more likely to be undervalued in the peer-

review process. Thus, the publications by such early-career researchers are another potential set 

of research that may be commercially valuable but may at the same time be under-recognized in 

terms of their academic value. I formalize the content of these discussions into the third 

hypothesis:     

H3: Other things equal, Internet adoption will be associated with a larger increase in the 

likelihood that patents cite papers with higher commercial impact. 

 

3. Data and key variables 

I use a variety of data sources to identify the effects of Internet adoption on patent citations  

among commercial firms. I match data on firm IT adoption from a private technology-adoption 

dataset (CI data) to data in the PatentsView patent dataset and in the newly assembled Patent 

Citation to Science (PCS) dataset (Marx and Fuegi, 2020). I also obtain information from 

Compustat on firm R&D expenditures as additional control. I estimate the model from 1992 to 

2000, a period of time that captures the early diffusion of the Internet technology.  
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3.1 Data 

3.1.1 Patent citations to science data 

My main dependent variable, the extent of firms’ reliance on science, is measured by the 

patent citation to scientific papers using the newly assembled, large scale, open-source Patent 

Citation to Science dataset (PCS) (see Marx and Fuegi (2020), available on 

relianceonscience.org). It extracts the references to scientific articles on both the front-page and 

body-text of patent documents granted by U.S. Patent and Trademark Office and European 

Patent Office. Based on a combination of machine-learning and heuristic-based rules, the 

algorithm enables the unformatted body-text citations to be identified, and it achieves a high 

precision rate7. While the front-page citation serves as a legal purpose to disclose prior art, the 

body-text citations are not legally binding, and, thus, they are believed to be a more accurate 

proxy for the actual scientific inspiration for inventors. They are also more diverse temporally, 

geographically, and topically than the front-page citations (Marx and Fuegi, 2020).  

The PCS dataset links each paper to Microsoft Academic Graph (MAG), which collects 

over 160 million papers published since 1800. Therefore, a variety of detailed information for 

each cited paper can be identified, including journal name and impact factor; author name and 

affiliation; and fields of study8. I rely on these paper and author characteristics to define the 

status of cited papers in the academic literature.  

References to non-patent literature and references to prior patents are the two primary 

forms of “prior art” in patent inventions. While references to prior patents have been studied 

 
7 A third-party assessment shows that the algorithm can capture up to 93% of patent citations to science with an 
accuracy rate of 99% or higher. 
8 The journal impact factor is calculated for all journals in MAG. In this paper I used six fields of study, taken from 
the Organization of Economic Co-operation and Development (OECD), and mapped from MAG subjects. The PCS 
data also provide 39 OECD subfields, Web of Science fields, and more than 200,000 fields automatically extracted 
from the papers. 
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intensively in innovation literature for decades (e.g., Trajtenberg, 1990; Jaffe et al., 1993; Hall et 

al., 2001; 2005; Fleming et al., 2007), very little research has studied the citations from patents to 

non-patent literature due to the costly data construction (Fleming and Sorenson, 2004; Katila and 

Ahuja, 2002; Gittelman and Kogut, 2003; Fleming et al., 2019). Moreover, these studies include 

only front-page citations, and they are mostly limited to a single industry or to a small number of 

firms. The PCS dataset enables me to conduct multiple-industry analysis with  comprehensive 

citations from both front pages and the main texts. 

3.1.2 IT data 

I rely on the Harte-Hanks Market Intelligence Computer Intelligence Technology 

database (hereafter, CI database) to measure Internet adoption. The CI data contain information 

on establishment characteristics, such as the installations of IT software and hardware, the 

number of employees at site, and industrial classifications. As one of the most comprehensive 

sources of micro-level IT investment, this dataset has been used by many researchers to study the 

adoption and economic implications of IT investments (Bloom et al., 2012; Bresnahan et al., 

2002; Bresnahan and Greenstein ,1996; Forman et al., 2005, 2012; Nagle, 2019).  

I focus on multiple industries within the manufacturing sector (North American Industry 

Classification System (NAICS) codes 31-33) because the patenting purpose and activities are 

more similar within this sector than in others. I exclude smaller establishments with fewer than 

100 employees to prevent the potential measurement error as demonstrated in prior literature that 

used establishment-level CI data (e.g., Forman et al. 2005, 2008, 2012). My sample period  

extends from 1992 to 2000 to capture the early diffusion of commercial Internet, which started in 

the second half of 1995. Due to data constraints, I use every other year data,  and I set the 

adoption rate to be zero in 1992 and 1994.  
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The unit of analysis in this paper is a firm-MSA year. A firm-MSA represents an 

aggregation of establishments in a focal MSA that belong to the same public firm. It can be 

regarded as a “plant” of the firm. In the sample, over half of firms contain multiple 

establishments in a given MSA.  I merge the CI data to the Compustat data using the crosswalk 

between the CI establishment identifier and the Compustat public-firm identifier, the Global 

Company Key (GVKEY), a unique, six-digit code assigned to each company.  In many cases, a 

firm has establishments in several locations. I use the MSA as the geographical unit, and I match 

each establishment to an MSA using its county FIPS code. I aggregate all the establishments that 

belong to the same firm in a focal MSA into a larger unit (i.e., firm MSA). This larger unit can 

better account for the commuting patterns of the inventors.    

3.1.3 Patent data 

As the PCS dataset only contains patents that have at least one scientific citation, I use 

the PatentsView dataset to identify all patent applications by my sample firms that were filed at 

and U.S. Patents and Trademarks Office (USPTO) over the period from 1992 to 2000, and were 

successfully granted eventually. The crosswalk between firm GVKEY and patent identification 

is provided by Autor et al. (2020). I also divided the patents into six different technological 

classifications using the definition from Hall, Jaffe, and Trajtenberg (2001) (HJT category): 

Chemical; Computers & Communication; Drugs & Medical; Electrical & Electronic, 

Mechanical; and Other. Because each patent reports the county FIPS code of all inventors,  I 

aggregate the inventor addresses at the MSA level to merge to the firm-MSA data.  

3.1.4 Other data sources 

I also collect data from other sources to control key factors that may affect firms’ patent-

to-science citations. I collect the R&D expenditures at firms from the Compustat data. To deal 
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with the missing values, I adopt a similar approach to Hall and Oriani (2006) and Simeth and 

Cincera (2016), assuming a growth rate of R\&D stock, and simulating the missing observations 

for firms that reported in selected years. For the manufacturing sector I use a growth rate of 6\%, 

a proxy for the average R\&D expenditure growth rate calculated from reported firms. The 

details on recovering missing R\&D data are described in Appendix C. Because each observation 

in Compustat data is at public-firm level, I normalize the per-location spending using the number 

of firm-MSA locations in the CI data.  

3.2 Key Variables 

With the four datasets, my final sample contains 541,568 patent citations to 167,882 

unique scientific papers. These patent applications were successfully submitted from 3,651 large, 

public-firm MSAs between 1992 and 2000.  Because I use every-other-year data, the number of 

observations is 18, 225. The main dependent variable and independent variables are described as 

follows: 

3.2.1 Dependent variable 

Incidence of patent citation to science. The interest is to understand the implications of IT 

adoption on firms’ citation to science to scientific papers in innovation process. I use the 

incidence of patent to science citation at firm-MSA-year as the key dependent variable. Overall, 

over 28.1% observations in the entire sample report a patent citation to at least one scientific 

paper (Table 1). Specifically, the main contribution of this paper is to analyze the heterogeneity 

between patent citation to high status papers and low status papers. Thus, I divide the 167,882 

cited papers into high status and low status groups according to their authors’ career stages, 

forward paper citations, journal impact factors, and forward patent citations. The incidences of 

citation to these different groups of papers are reported in Table 1.  
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3.2.2 Independent variable 

Internet adoption. I consider the establishment to have adopted basic Internet if it reports 

one of the followings in the CI data: (1) an Internet Service Provider (ISP); (2) internal intranet 

based on the TCP/IP protocol (Transmission Control Protocol/Internet Protocol); (3) TCP/IP 

based email; or (4) having used the Internet for research purposes. These investments are basic 

Internet access, which was technologically mature and required little complementary investment 

and adaptation in the business process by organizations. Therefore, it allows me to focus on the 

short-term changes of firms’ propensity to cite science in innovation in response to the adoption 

of new technology tools. In aggregating the establishments into firm-MSAs, I took the maximum 

value and consider the adoption to be true if at least one of the establishments has connected to 

the Internet. Among the sample firm-MSAs, none had adopted the Internet in 1992 and 1994, 

30% had adopted by 1996, and up to 93% had adopted by 2000. 

Other controls include firm-MSA characteristics, such as number of employees, log of 

patent applications in current period, log of R&D expenditures, dummy for existence of different 

HJT category patents; as well as local characteristics, such as log of patent applications in the 

focal MSA. Table 1 provides a summary statistic of the key variables.  

4. Empirical Framework 

4.1.  Effects of Internet adoption on patent to paper citation 

I exploit the variations in patent-to-science citations in firms with and without Internet in period 

before and after the adoption to compare how basic Internet adoption influences firm citing 

science in their innovation process. The unit of analysis is a firm-MSA-year. I focus on a linear 

model with fixed effects in the baseline analysis to document the underlying relationships 
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between internet adoption and incidence of scientific citation. The baseline difference in 

differences framework is as follows:  

𝑆𝑐𝑖𝑒𝑛𝑐𝑒𝐶𝑖𝑡𝑎𝑡𝑖𝑜𝑛!"# 	= 𝛼$ +	𝛼%𝑋!"# +	𝛼&𝑍"# + 𝛽𝐼𝑛𝑡𝑒𝑟𝑛𝑒𝑡!"# +3D(𝑃𝑎𝑡𝑒𝑛𝑡')
(

')%

+	𝜇!" + 𝜏# + 𝜀!"#	,			(1) 

where 𝑆𝑐𝑖𝑒𝑛𝑐𝑒𝐶𝑖𝑡𝑎𝑡𝑖𝑜𝑛!"# is the outcome variable such as dummy for whether firm 𝑖 from MSA 

𝑗 has cited at least one scientific paper in all its patent applications in year	𝑡.  𝐼𝑛𝑡𝑒𝑟𝑛𝑒𝑡!"# is a 

dummy that equals one if firm 𝑖 from MSA 𝑗 has adopted internet by year 𝑡. 𝑋!"# is a vector of 

time-varying controls at the firm-MSA level, including log number of patents applications in the 

current period, log number of employees, log of R&D expenditure, etc.  𝑍"#	is a vector of time-

varying local characteristics, including the log number of patent applications at the MSA level to 

control for the innovation capability in local area, log population and log GDP per capita to 

control for economic factors that may affect firm innovation.  𝑃𝑎𝑡𝑒𝑛𝑡$ is a dummy for whether 

the firm has at least one patent application that belongs to HJT tech category (1-6) in year 𝑡. 𝜇!" 

and 𝜏# are firm-MSA fixed effects and time fixed effects, respectively, and 𝜀!"#  is an 

idiosyncratic error term.  

4.2. Event studies 

I conduct an event study to show the parallel trends between Internet adopting firms and their 

peer firms who have no access to the Internet for pre-adopting periods, as the following:  

𝑆𝑐𝑖𝑒𝑛𝑐𝑒𝐶𝑖𝑡𝑎𝑡𝑖𝑜𝑛!"# 	= 𝛼% + 7 𝛽&

'

&()*

1(𝑃𝑒𝑟𝑖𝑜𝑑𝑆𝑖𝑛𝑐𝑒𝐼𝑛𝑡𝑒𝑟𝑛𝑒𝑡!"#&

= 𝑘) +	𝛼+𝑋!"# +	𝛼'𝑍"# + 𝜇!" + 𝜏# + 𝜀!"#		(2) 

The event window ranges from three periods before adoption (i.e., 𝑘 = 	−3,−2,−1) and three 

periods after the adoption of the Internet (i.e., 𝑘 = 	0, 1, 2) for any given firm-MSA. The control 
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variables include time fixed effects, firm-MSA fixed effects, and time-varying firm 

characteristics and local controls. The baseline is the period before Internet adoption (i.e., 𝑘 =

−1).	  

 

 

 

5. Results  

I first establish a relationship between Internet adoption at firms and the incidence of patent 

citation to science. Then I examine the heterogeneities of cited scientific papers using four paper 

characteristics: career stage of all authors and the first author, journal impact factor when the 

paper was published, forward academic citations, and forward patent citations. As discussed in 

section 2, the first three are used to measure the status of cited paper in the academic literature, 

and the last one is a measure for its commercial impact. Finally, I explore robustness with respect 

to sample and specification.   

5.1 Baseline Results 

My baseline regression presents a strong and positive correlation between Internet 

adoption and firms’ usage of science. The results are reported in Table 2. Column (1) shows that 

Internet adoption is associated with a 2.6 percent point increase in the likelihood of citing 

scientific papers in patent applications, statistically significant at the 5% level. Comparing the 

average patent citation rate to science of 28.1% in the sample, this translates to a 9.3 percentage 

increase in the likelihood of observing a patent to paper citation.  To control for the effects of the 

Internret on patenting propensity, I limit the sample into regular patenting firms, i.e., firm-MSAs 

that have patent applications in at least four periods between 1992 and 2000. The results remain 
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robust and are reported in Column (2).  Column (3) presents the sub-sample regression results 

where I exclude the top 2% largest sized firm-MSAs (with above 9,000 employees), because the 

largest firms may be insulated in ways due to the outlier size. I further demonstrate robustness by 

excluding the top 5%, 10%, and top 25% sized firm-MSAs. 

 

Figure 1a plots the coefficients estimates  \( \beta_{k}\) for the event study in equation 

(2).  The trends between Internet adopting firm-MSAs and their non-Internet adopting peers are 

similar prior to adoption. The coefficients of the event times \( k =  -3, -2, -1\) are small and 

insignificant. In contrast, the coefficients increase sharply after the adoption of Internet, and 

remain consistent in the three post adoption periods. Figure 1b shows the event study result 

without the 2$\%$ sized firm-MSAs (sample in Column (3) of Table 2). By excluding the largest 

samples, the pre-trend becomes closer to zero. 

5.2 Heterogeneity analysis by status of cited papers in the academic literature 

In this session, I divide the cited papers into high status group and low status group in the 

academic literature according to three key features, i.e., career stage of scientist(s), journal 

impact factor, and forward academic citations. I rank all those papers in the baseline; I also 

conduct robustness checks where I rank the papers within each OECD field of studies to account 

for the differences across fields. 

5.2.1 Career stage of scientist 

The first measurement is constructed using author-level information. I obtained the 

career-long publication records of all authors in the cited articles from Microsoft Academic 

Graph. If a paper is published in the first three years of an author’s publication record, then I 
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define it as an early-career work of this scientist. I construct two sets of early-career papers: 

when all authors are in their early career, and if the first author is in his/her early-career.  

The regression result of the effects of Internet adoption on firms’ patent citation to early-

career work is presented in Table 3. Column (1) shows that Internet adoption at firms is 

associated with a positive 2.5 percent point increase in the likelihood of citing young scientists’ 

work (significant at 5% level), which translates into a 10.4 percentage increase compared to a 

24% citation rate. Column (2) presents a stronger effect of Internet adoption when only the first 

author is in his/her early career stage, with a 3.1 percent point increase and a 12.1 percent 

increase in the likelihood of patent citation by Internet adopting firms, significant at 1% level. 

Column (3) and (4) explore the effect of Internet adoption on patent citation to papers with all 

authors being senior scientist(s), and the first author being senior, respectively. The results are 

not economically or statistically significant. 

Figure 3 plots the coefficients estimates for patent citation to papers written by early-

stage scientist(s) and senior scientist(s), respectively. The trends between Internet adopting firm-

MSAs and their non-Internet adopting peers are similar prior to adoption in both groups. The 

coefficients of the three pre-adopting periods are small and not significant. In post-adoption 

periods, the coefficients increase sharply for patent citation to papers by early-career scientist(s) 

and remain consistent. However, the effects of patent citation to papers by senior scientist(s) 

experience no significant changes in post adoption periods. 

5.2.2 Journal impact factor 

The second measurement, the journal impact factor (JIF) is one important index to 

measure the academic impact of a journal. It is calculated by dividing the number of paper 

citations in a given journal by the total number of articles published in the previous two years. I 
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rank all sample papers based on the JIF at the time of publication. I use top 25%, top 50%, 

bottom 25% and bottom 50% ranked papers to represent scientific works of different levels of 

academic impact, respectively. The results are reported in Table 4.Column (1) shows Internet 

adoption at firms has a 3.0 percentage point effect on the incidence of patent citation to the 

bottom 25% papers, which is significant at the 1% level. This translates into a 13.2% increase in 

the likelihood of citing a lowest ranked paper. Column (2) shows that the correlation between 

Internet adoption and patent citation to the bottom 50% papers are slightly smaller in terms of 

percentage point (2.6) and percentage change (9.6%), and is significant at the 5% level. In 

contrast, columns (3) and (4) show that the effect of Internet adoption on patent citations to 

academically more impactful papers are much less significant, in particular, negative for the top 

25% papers. The coefficients of Internet adoption are neither statistically nor economically 

significant. 

Figure 4 shows that the incidence of patent citation to scientific papers in bottom 25% 

impact factor journals increases sharply after the adoption of Internet, and that increase last for 

three periods after the Internet adoption. In contrast, the incidence of patent citation to papers in 

top journals show no apparent trend- it decreases slightly in the first two periods after Internet 

adoption and shows a small increase three years after adoption. For both groups, there are no pre-

trends before access to the Internet. 

5.2.3 Forward academic citations 

 The third measure for a paper’s academic impact is the forward academic citation count. I 

sum up the number of citations received by each paper till the end of 2019 and create quartiles. 

Column (1) and (2) in Table 5 show that Internet adoption has no statistically or economically 

significant effect on patent citation to papers with top 25% or top 10% academic citation count. 
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In contrast, column (3) suggests that patent citation to the bottom 39% papers with zero 

academic citation count is positively correlated with Internet adoption. These papers experience 

a 2.0 percentage point increase in the likelihood to be cited by Internet adopting firms (which 

translates into an 8.1% increase compared with a citation rate of 24.56%, and statistically 

significant at the 10% level). The results suggest that scientific articles with few academic 

citations, which have little impact in academia, turn out to be a useful source of knowledge to 

innovative firms if the access barrier to these discoveries is mitigated or removed by advanced IT 

tools such as the Internet. The event study analysis as plotted in Figure 5 show no pretrends 

before the adoption. 

5.3 Heterogeneity analysis by the commercial impact of cited papers 

5.3.1 Forward patent citations 

I use forward patent citations received by each paper as a proxy for the commercial 

impact of any cited papers. The underlying hypothesis is that the Internet enables firms to find 

useful scientific discoveries that contribute to the innovation process. These papers may receive 

more forward patent citations by other firms, and in return, they have higher revealed 

commercial value. To check this hypothesis, I use the entire PCS dataset to sum up the total 

forward patent citation count received by each cited paper till the end of 2018. As illustrated in 

Figure 2, the sample papers (all published before 2000) have continuously been cited by USPTO 

patents until the latest year in the PCS dataset.  

To check the hypothesis that Internet adoption is associated with an increase in patent 

citation to papers with higher commercial value, I divide all papers into quartiles based on their 

total patent citations. Then I construct the firm-MSA level measure as the dependent variable: 

incidence of patent citation to papers in the top quartile(s) and in the bottom quartile(s). The 
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results are reported in Table 6. As shown in Column (1) and (2), Internet adoption is associated 

with a positive and significant increase in the likelihood of citing papers with top patent citation 

counts. For the top 10% papers, the percent point is 1.4, which translates into a 12.2% increase 

and statistically significant at the 5% level. The top 25% papers experience a similar increase in 

the likelihood of being cited by Internet adopting firms, with a 2.0 percent point and a 10.7% 

increase, significant at the 5% level. In contrast, the effect of Internet adoption on citing papers 

with fewer patent citations is not statistically different from zero. The results suggest that 

commercially valuable papers are more likely to be discovered by firms with the Internet. 

5.4 Robustness checks 

5.4.1 Placebo Test 

I conduct a placebo test using randomly assigned Internet adoption years for all firm-

MSAs. The null hypothesis is that Internet adopters and non-Internet adopters should not be 

significantly different using placebo adopting years. I random assign an Internet adoption year 

between 1996 and 2000 for each firm-MSA in the sample and conduct the estimate of equation 

(1) for 500 times using false adopting years. The results are plotted in Figure 6. The placebo 

effects center around zero, and the observed effect size (9.3%) lies outside of the 99% 

confidence interval of the distribution of coefficients from 500 placebo tests. The results suggest 

that a false adoption time of the Internet is not associated with an increase in the likelihood of 

patent citation to science in Internet adopting firm-MSAs. 

5.4.2 Journal Impact Factor by OECD fields of study 

The heterogeneity across field of studies may affect forward paper citations and journal 

impact factor. I account for the cross-field difference by ranking the sample papers within its 
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OECD field of studies9. I use the six categories, i.e., natural science, engineering and technology, 

medical and health sciences, agricultural science, social science, and humanities. As shown in 

Figure A2, natural science and medical and health sciences journals have higher impact factors 

on average, and the factors are increasing slightly across time. Table A2 reports the 

heterogeneity analysis by journal impact factor with adjustments to OECD fields, and the results 

remain robust to the baseline as in Table 4.   

5.4.3 Controlling for supply of scientific knowledge 

The internet revolution is associated with a knowledge explosion, which can increase the 

supply of scientific knowledge and affect the propensity to cite science at firms. To control for 

the supply of knowledge, I refine my analysis to a subset of sample papers that were published 

before 1989. The underlying assumption is that firms’ exploitation to older knowledge base has 

little correlation with the knowledge boom during the Internet age. The regression results of 

Internet adoption on the likelihood of citing papers published before 1989 remain robust to the 

main result, as is reported in Column (1) of Table A1. These papers experience a 2.0 percent 

point increase in the likelihood to be cited by an Internet adopting firm (which translates into an 

8.5% increase and is statistically significant at the 5% level). 

In addition, I use data mining to collect the digitization data of each paper that is 

available on the PubMed platform. PubMed is a search engine that provides online access to 

papers in the MEDLINE database on life sciences and biomedical topics. The National Library 

of Medicine started to create the digital code for selected papers since the 1970s10. As a result, 

these papers are more accessible in the offline database in the local library using the retrieval 

language by the librarians. Column (2) in Table A1 shows that these more accessible old papers 

 
9 The definition of OECD fields is defined at:  http://www.oecd.org/science/inno/38235147.pdf. 
10 author’s interview with the U.S. National Library of Medicine, History of Medicine Division 
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with digital codes have no significant correlation with the Internet adoption. In contrast, column 

(3) reports the regression results for all other old papers published before 1989 that have no 

MEDLINE digital codes, and thus might be harder to find in offline databases. These less 

accessible papers experience a boost in the likelihood to be cited by Internet adopting firms with 

a 2.3 percentage point increase (10% percent increase) and statistically significant at 5% level. 

Figure A1 shows that the distributions of the two set of papers with and without digital codes are 

consistent. However, the results can also be driven from a field specific effect, as the PubMed 

papers are limited to life sciences literature.   

 

6. Conclusion and discussions 

6.1 Conclusion 

This paper explores how the Internet affect firms’ exploration of high-status and low-status 

scientific publications in patent-invention process. It suggests that the Internet enables firms to 

discover “hidden gems” – commercializable yet under-recognized scientific findings. These are 

findings that come from early-career scientists, from work published in less prestigious journals, 

and from papers with fewer academic citations but have higher forward patent citations. These 

findings suggest that IT reshapes the process of how firms source knowledge for innovation. By 

reducing search costs, IT enables firms to disproportionately increase the reliance on scientific 

knowledge that previously had tended to receive less attention. The results shed light on how IT 

reinforces the link between science and innovation. 

6.2 Discussion  

6.2.1 Long-term effects vs. short-term effects 
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This paper focuses on the short-run impact of the Internet on firms’ utilization of 

scientific knowledge in innovation processes. In the long run, complementary changes in process 

innovation within organizations can lead to a change in the product-innovation process in ways 

that involve a higher reliance on science. For example, in the case of complex innovation, such 

as the discovery of new drugs, digital science can transform innovation by integrate new 

knowledge into innovation processes. Here, digital science refers not only to digitized scientific 

articles online, but also new ways to “measure, analyze, and model chemical compounds, 

diseases, and human biology” (Dougherty and Dunne, 2012). Access to the Internet increases the 

availability and creation of digital science at firms. It facilitates learning about emerging digital 

knowledge through a wide variety of publications, including scientific articles and academic 

blogs.  In addition, the use of IT at organizations can be associated with an emerging boundary 

spanning. This can reinforce the use of digital knowledge in complex innovation, which usually 

involves cooperation among workers from different divisions (Levina and Vaast, 2005). 
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  Table 1. Summary statistics of key variables   

Variable Mean Std. Dev. Min Max 

Internet adoption  0.397 0.489 0 1 

Incidence of patent citation to  

all scientific papers 
0.281 0.449 0 1 

papers in the bottom 25% impact factor journals  0.227 0.419 0 1 

papers in the bottom 50% impact factor journals 0.270 0.444 0 1 

papers in the top 25% impact factor journals 0.111 0.314 0 1 

papers in the top 50% impact factor journals 0.172 0.378 0 1 

papers all authors at the first 3 years of career-long publication   0.240 0.427 0 1 

papers with the first author at first 3 years of career-long 

publication   0.256 0.436 0 1 

papers with all authors above 5 years of career-long publication   0.152 0.359 0 1 

papers with the first author above 5 years of career-long 

publication   0.199 0.399 0 1 

Log number of employees 6.307 1.084 4.605 12.613 

Log of patent applications in current period 1.074 1.295 0 7.492 

Log of patent applications in local MSA 6.232 1.631 0 9.828 

Log of R&D expenditures 3.912 2.819 0 9.758 

Dummy for existence of chemical patent 0.221 0.415 0 1 

Dummy for existence of computers and communications (C&C) 

patent 
0.167 0.373 0 1 

Dummy for existence of drugs and medical (D&M) patent 0.083 0.277 0 1 

Dummy for existence of electrical and electronics (E&E) patent 0.233 0.422 0 1 

Dummy for existence of mechanical patent 0.259 0.438 0 1 

Dummy for existence of other patent 0.260 0.438 0 1 

Instrument variables      

Year of change to Price cap regulation x after 1996 dummy 56.628 46.295 0 99 

Number of observations is 18,255.  
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Table 2. Baseline DID estimation results of Internet adoption on patent to science citations  

 (1) (2) (3)  

VARIABLES Entire sample Regular patentors W/O top 2% largest 
firm-MSAs 

    
Internet adoption 0.026** 0.041** 0.029** 
 (0.011) (0.019) (0.011) 
log number of employees 0.003 -0.001 0.005 
 (0.012) (0.016) (0.011) 
log of patent applications in current period 0.183*** 0.166*** 0.188*** 
 (0.009) (0.009) (0.007) 
log of patent applications in local MSA -0.012 -0.039 -0.012 
 (0.015) (0.033) (0.015) 
log of R&D expenditures 0.003 -0.000 0.008 
 (0.003) (0.005) (0.010) 
    
Observations 18,255 7,630 18,200 
R-squared 0.724 0.674 0.721 
Year FE YES YES YES 
Firm-MSA FE YES YES YES 
HJT patent category dummies YES YES YES 
Mean of DV 0.281 0.552 0.2795 
Percentage change 9.3% 7.4% 10.3% 

Notes: The dependent variable is the incidence of a patent citation to scientific papers in firm-MSA, and the 
independent variable is Internet adoption (access to basic internet) at firm-MSA. All regressions include a constant 
term, firm-MSA fixed effects, time dummies, and dummies for six HJT patent category indicators.  
* Significant at the 10% level. ** Significant at the 5% level. *** Significant at the 1% level. 
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Table 3. Heterogenous effects of firm internet adoption on patent citation to scientific papers 
by career stage of scientists  
  (1) (2) (3) (4) 

 

 
Young scientists’ paper 

 
Senior scientists’ paper 

 

 
DV: incidence of patent 
citation to papers 

All authors at 
first 3 years of 

career-long 
publication 

First author at 
first 3 years of 

career-long 
publication 

All authors 
above 5 years of 

career-long 
publication 

First authors 
above 5 years of 

career-long 
publication 

      
Internet adoption 0.025** 0.031*** 0.013 -0.004 

 (0.011) (0.011) (0.010) (0.008) 
Log of number of employees -0.004 -0.004 0.003 -0.011 

 (0.011) (0.011) (0.009) (0.010) 
log of patents in current 
period 0.177*** 0.181*** 0.148*** 0.130*** 

 (0.009) (0.009) (0.010) (0.011) 
log of patents in local MSA -0.005 -0.010 -0.003 0.007 

 (0.012) (0.013) (0.013) (0.011) 
log of R&D spending 0.002 0.003 0.005** 0.004* 

 (0.002) (0.002) (0.002) (0.002) 
     
Observations 18,255 18,255 18,255 18,255 
R-squared 0.704 0.716 0.698 0.671 
Year FE YES YES YES YES 
Firm-MSA FE YES YES YES YES 
HJT patent category dummies YES YES YES YES 
Mean of DV 0.240 0.256 0.199 0.152 
Percentage change 10.4% 12.1% 6.5% -2.6% 
Notes: the dependent variable is patent citation to early-career scientists’ papers. A paper is defined as early-
career work if the publication year is within the first 3 years of this author’s first publication. I identify every 
author’s first publication year using all papers published before 2001 from Microsoft Academic Graph.  
 
  



 

 

 
 
 
Table 4. Heterogenous effects of Internet adoption on patent citation to scientific papers by 
journal impact factor 
  (1) (2) (3) (4) 
 Entire sample  

DV: incidence of patent citation 
to papers 

Citation to 
bottom 25% 

papers 

Citation to 
bottom 50% 

papers 
Citation to top 

25% papers 
Citation to top 

50% papers 
      
Internet adoption 0.030*** 0.026** -0.008 0.011 

 (0.010) (0.011) (0.007) (0.007) 
Log of number of employees 0.002 0.004 0.000 -0.009 

 (0.011) (0.011) (0.006) (0.007) 
log of patents in current period 0.162*** 0.182*** 0.093*** 0.131*** 

 (0.010) (0.010) (0.010) (0.009) 
log of patents in local MSA 0.012 -0.004 0.008 -0.015 

 (0.012) (0.013) (0.009) (0.011) 
log of R&D spending 0.002 0.002 0.008*** 0.008*** 

 (0.003) (0.003) (0.002) (0.002) 
Constant -0.083 0.008 -0.075 0.136* 

 (0.098) (0.107) (0.072) (0.080) 
     

Observations 18,255 18,255 18,255 18,255 
R-squared 0.696 0.714 0.705 0.726 
Year FE YES YES YES YES 
Firm-MSA FE YES YES YES YES 
HJT patent category dummies YES YES YES YES 
Mean of DV 0.227 0.270 0.111 0.172 
Percentage change 13.2% 9.6% -7.2% 6.4% 
Notes: the dependent variable is patent citation to papers in lower ranked journals. The ranking is based on 
the Journal Impact Factor from publication year, and the quartiles are based on the 167,882 cited papers in 
estimation sample.  
  



 

 

 
 
Table 5. Paper impact: Heterogenous effects of Internet adoption on patent citation to scientific 
papers by forward academic citations   
  (1) (2) (4) 
Incidence of patent citation to papers 
with 

Top 10% paper 
impact by 2000   

 Top 25% paper 
impact by 2000 

bottom 39% papers with 
zero citations by 2000 

         
Internet adoption -0.007 0.009 0.020* 

 (0.007) (0.007) (0.011) 
log number of employees -0.013* -0.005 0.001 

 (0.007) (0.007) (0.011) 
log of patent applications in current 
period 0.114*** 0.154*** 0.188*** 

 (0.009) (0.008) (0.007) 
log of patent applications in local MSA 0.006 -0.008 -0.012 

 (0.009) (0.009) (0.014) 
log of R&D expenditures 0.020*** 0.009 0.006 

 (0.007) (0.008) (0.009) 
Constant 0.008 0.071 0.071 

 (0.067) (0.075) (0.112) 

    
Observations 18,255 18,255 18,255 
R-squared 0.666 0.706 0.703 
Year FE YES YES YES 
Firm-MSA FE YES YES YES 
HJT patent category dummies YES YES YES 
Mean DV 0.0949 0.1415 0.2456 
Percentage change -7.4% 6.4% 8.1% 
The bottom 39% of the unique 167,881 cited papers receive zero academic citations till 2000.   
  



 

 

 
 
 
 
 
Table 6. Paper commercial impact: Heterogenous effects of Internet adoption on patent 
citation to scientific papers by paper commercial impact   

 (1) (2) (3) 

Incidence of patent citation to papers with 
Top 10% forward 

patent citations by 
2018 

Top 25% forward 
patent citations by 

2018 

Bottom 25% 
forward patent 

citations by 2018 
    

Internet adoption 0.018** 0.020** 0.002 
 (0.007) (0.009) (0.009) 
log number of employees 0.009 0.012 -0.001 
 (0.008) (0.010) (0.009) 
log of patent applications in current period 0.155*** 0.164*** 0.200*** 
 (0.008) (0.009) (0.009) 
log of patent applications in local MSA 0.006 0.006 -0.011 
 (0.010) (0.010) (0.013) 
log of R&D expenditures 0.022*** 0.015 0.002 
 (0.007) (0.009) (0.008) 
Constant 0.018** 0.020** 0.002 
 (0.007) (0.009) (0.009) 
    
Observations 18,255 18,255 18,255 
R-squared 0.703 0.72 0.655 
Year FE YES YES YES 

Firm-MSA FE YES YES YES 

HJT patent category dummies YES YES YES 

Mean of DV 0.148 0.187 0.190 
Percentage change 12.2% 10.7% 1.1% 

 
 
 
 

 
 
 

  



 

 

 
(a) 

 

 
(b)  

 
Figure 1. Event studies of Internet adoption on Patent to science citations  

Note: This figure shows the event study results of Internet adoption on patent to scientific paper citations 
in the estimation sample. The dependent variable in this regression is the incidence of patent to scientific 
paper citations, and the independent variables include three pre-adoption indicators and two post-
adoption indicators, firm-MSA fixed effects, dummies of HJT patent technology classifications, log 
employment size, log number of patent applications at firm-MSA, log of R&D expenditure, and log of 
patent applications in local MSA. Standard errors are clustered at MSA level. 
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Figure 2. Distribution of patent citations to sample papers over time 
 
Notes: The definition of paper commercial impact is citations from USPTO granted patents by 
the end of 2018. Each observation in this figure is a patent-paper citation received by sample 
papers in the entire PCS dataset. 
 
 
  

  



 

 

 
 
 
 

 
Figure 3. Event studies of internet adoption on patent citation to scientific papers by career 
stage of paper authors  
  
Note: This figure shows the event study results of Internet adoption on patent to scientific paper citations by 
career stage of paper author. I regress the incidence of patent to citation to papers written by young scientist and 
by senior scientist, respectively. The independent variables include three pre-adoption indicators and three post-
adoption indicators, firm-MSA fixed effects, dummies of HJT patent technology classifications, log employment 
size, log number of patent applications at firm-MSA, log of R&D expenditure, and log of patent applications in local 
MSA. Standard errors are clustered at MSA level. 
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Figure 4. Event studies of internet adoption on patent citation to scientific papers by journal 
impact factor 
 
Note: This figure shows the event study results of Internet adoption on patent to scientific paper citations by 
journal impact of cited papers. I regress the incidence of patent to citation to papers in the bottom 25% impact 
factor journals and patent citation to papers in the top 25% impact factor journals, respectively. The independent 
variables include three pre-adoption indicators and three post-adoption indicators, firm-MSA fixed effects, 
dummies of HJT patent technology classifications, log employment size, log number of patent applications at firm-
MSA, log of R&D expenditure, and log of patent applications in local MSA. Standard errors are clustered at MSA 
level. 
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Figure 5. Event studies of internet adoption on patent citation to scientific papers by academic 
citations of papers 
 
Note: This figure shows the event study results of Internet adoption on patent to scientific paper citations by 
forward academic citation of cited papers. I regress the incidence of patent to citation to papers with zero 
academic citations and with top 10% academic citations, respectively. The independent variables include three 
pre-adoption indicators and three post-adoption indicators, firm-MSA fixed effects, dummies of HJT patent 
technology classifications, log employment size, log number of patent applications at firm-MSA, log of R&D 
expenditure, and log of patent applications in local MSA. Standard errors are clustered at MSA level. 
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Figure 6. Placebo Test with Random Internet Adoption Years 
 
Notes: This figure plots the results of a placebo test that randomly assign Internet adoption 
year. I conduct 500 estimates and draw the distribution of the 500 placebo effect sizes (each 
effect size is calculated by compare the coefficient to the average rate of patent citation to 
science).  The red line represents the observed effect size, which lines outside of the 99% 
confidence interval of the distribution of the coefficients.  
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Appendix A. Additional Robustness Checks 
 
Table A1. Timing falsification test for citation to low-status papers 

  (5) (6) (3) (4) (7) (8) (9) (10) 

DV: Patent citation to paper…  
First author young 

  
bottom 25% journal 

impact factor 
Zero academic citation 

  
Top 25% forward 
patent citations  

                  
Internet adoption  0.032*** 0.033*** 0.031*** 0.031*** 0.020* 0.019* 0.020* 0.019* 

 (0.012) (0.012) (0.010) (0.010) (0.011) (0.011) (0.011) (0.011) 
Internet adoption in future two years 0.000  -0.002  -0.010  -0.010  

 (0.010)  (0.011)  (0.010)  (0.010)  
Internet adoption in future four years 0.007  0.003  0.004  0.004  

 (0.009)  (0.009)  (0.010)  (0.010)  
Internet adoption in future two or four 
years  0.001  -0.001  -0.002  -0.002 

  (0.009)  (0.010)  (0.010)  (0.010) 
log number of employees -0.003 -0.003 0.003 0.003 0.001 0.001 0.001 0.001 

 (0.010) (0.010) (0.011) (0.011) (0.011) (0.011) (0.011) (0.011) 
log of patent applications in current 
period 0.195*** 0.195*** 0.194*** 0.194*** 0.188*** 0.188*** 0.188*** 0.188*** 

 (0.007) (0.007) (0.007) (0.007) (0.007) (0.007) (0.007) (0.007) 
log of patent applications in local MSA -0.013 -0.013 0.008 0.008 -0.012 -0.012 -0.012 -0.012 

 (0.013) (0.013) (0.012) (0.012) (0.014) (0.014) (0.014) (0.014) 
log of R&D expenditures 0.014 0.014 0.004 0.004 0.006 0.006 0.006 0.006 

 (0.010) (0.010) (0.009) (0.009) (0.009) (0.009) (0.009) (0.009) 
         

Observations 18,255 18,255 18,255 18,255 18,255 18,255 18,255 18,255 
R-squared 0.713 0.713 0.693 0.693 0.703 0.703 0.723 0.723 
Year FE YES YES YES YES YES YES YES YES 
HJT patent category dummies YES YES YES YES YES YES YES YES 
Firm-location FE YES YES YES YES YES YES YES YES 

 



 

 

 
 
 
Table A2. Effects of Internet adoption on patent citation to a subset of old papers 
 
 
 

  (1) (2) (3) 

Incidence of patent citation to  
  

All papers 
published before 

1989  

Papers published 
before 1989 with a 

PubMed digital 
code (easily 

accessible in the 
library before the 

Internet age)  

 All other old 
papers  

(1) excluding (2) 
        
Internet adoption 0.020** -0.004 0.023** 

 (0.010) (0.006) (0.009) 
log number of employees 0.028*** 0.012*** 0.027*** 

 (0.006) (0.004) (0.006) 
log of patent applications in current period -0.016** 0.003 -0.015** 

 (0.006) (0.004) (0.006) 
log of patent applications in local MSA 0.010 -0.010 0.013 

 (0.013) (0.008) (0.013) 
log of R&D expenditures 0.026*** 0.010** 0.031*** 

 (0.008) (0.005) (0.008) 
    

Observations 18,255 18,255 18,255 
Year FE YES YES YES 
Firm-MSA FE YES YES YES 
HJT patent category dummies YES YES YES 
R-squared 0.679 0.697 0.703 
Mean DV  0.236 0.073  0.229  
Percentage change   8.5%  -5.5%  10.0% 

 
 
 
 

 
 
 
 
 
 
 



 

 

 
 

 
 
 
 
 
 
 
 

 
Figure A1. Distribution of patent citations to papers published before year 1989  
 
Notes: each observation is a patent-paper citation link. The red shadow represents the citation to papers 
that have PubMed digital codes. by the time of citation (Column (2) in Table A1), and the green shadow 
shows the citation to all other old papers (Colum (3) in Table A2).  
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Figure A2. Distribution of Journal Impact Factor of sample papers by OECD six fields of studies  
  



 

 

 
 
Table A3. Effects of Internet on patent to science citation by journal impact factor (adjusted by OECD 
paper field) 

  (1) (2) (4) (5) 
Journal Impact Factor (JIF)  
Ranked by OECD field Top 10%  Top 25% Bottom 10%  Bottom 25% 
          
Internet adoption -0.006 0.001 0.031*** 0.028*** 

 (0.007) (0.007) (0.009) (0.010) 
log number of employees -0.002 0.003 0.007 0.007 

 (0.007) (0.006) (0.011) (0.011) 
log of patent applications in current 
period 0.088*** 0.112*** 0.161*** 0.170*** 

 (0.010) (0.010) (0.010) (0.010) 
log of patent applications in local 
MSA 0.017* -0.012 0.010 0.006 

 (0.009) (0.009) (0.012) (0.013) 
log of R&D expenditures 0.025*** 0.030*** 0.004 0.002 

 (0.008) (0.008) (0.008) (0.009) 
     

Observations 18,255 18,255 18,255 18,255 
Year FE YES YES YES YES 
Firm-MSA FE YES YES YES YES 
HJT patent category dummies YES YES YES YES 
R-squared 0.679 0.705 0.697 0.703 
Mean DV 0.0859 0.1321 0.2239 0.2366 
Percentage change  -7.0% 0.8% 13.8% 11.8% 

  
 
  



 

 

 
Appendix B 
Examples of “hidden gems” – less recognized papers with high commercial value     

Academic impact Commercial 
impact 

 
Year  

 
Journal Name  

 
Paper Title First 

author is 
early-
career 

scientist 

Journal 
impact 

factor at 
the time 
of paper 

publicatio
n 

Forward 
paper 

citations 
by the 
end of 
2000 

Forward 
patent 

citations by 
the end of 

2000 

1969 

 
Advances in 
Enzymology - 
and Related 
Areas of 
Molecular 
Biology 
  

Solid-phase peptide 
synthesis Yes 0 2 742 

1983 DNA 

 
In Vitro Deletional 
Mutagenesis for 
Bacterial Production of 
the 20,000-Dalton Form 
of Human Pituitary 
Growth Hormone 
 

Yes 0 22 419 

1987 

 
 
Current 
protocols in 
molecular 
biology  

 
Growing lambda-
derived vectors 

Yes 0 5 473 

1991 PCR Methods 
Appl 

 
Capture PCR: efficient 
amplification of DNA 
fragments adjacent to a 
known sequence in 
human and YAC DNA  

Yes 0 3 985 

 
  



 

 

 
Appendix C. Recovering missing R&D 
  
 
In this paper, I assume a growth rate of R&D stock and simulate the missing observations for 
firms who only reported in selected years. I use a growth rate of 6%11 as a proxy for the 
manufacturing sector, which is the average growth rate calculated from reported firms, as 
shown in Table B1. My approach is similar to Simeth & Cincera (2016) and Hall and Oriani 
(2006).  
 
 
Table B1. Observations of R&D expenditure and growth rate 

Year Obs. of R&D reporting 
 firm-MSAs (percentage) log of R&D biennial growth rate  

1992 2,709 (74%) 2.25  
1994 2,771 (76%) 2.38 0.059 
1996 2,865 (78%) 2.57 0.079 
1998 2,880 (79%) 2.72 0.059 
2000 2,769 (76%) 2.81 0.033 

Total 13,994 (77%) Average biennial 
growth rate in R&D 0.058 

 
 
 
Table B2. Frequency of missing/reporting annual R&D for firm-MSAs in the estimation sample 
from Compustats  

Frequencies 
reporting R&D Number of firm-MSAs Percent Note 

0 541 14.82 Treat as zero 
1 118 3.23 Treat as zero?  Or below 
2 133 3.64 Assume the growth to be 6% in 

manufacturing sector; 
Use base-year value if reported; if not, then 

use the next period value. 

3 212 5.81 

4 261 7.15 

5 2,386 65.35   Use the original value from Compustats 
Total 3,651 firm-MSAs 100  

 
 
 

 
11 This is a biennial growth rate as I use every two-year data in the sample.  


